首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1158篇
  免费   77篇
  2022年   3篇
  2021年   20篇
  2020年   8篇
  2019年   11篇
  2018年   18篇
  2017年   14篇
  2016年   26篇
  2015年   38篇
  2014年   45篇
  2013年   66篇
  2012年   88篇
  2011年   82篇
  2010年   57篇
  2009年   46篇
  2008年   78篇
  2007年   85篇
  2006年   81篇
  2005年   77篇
  2004年   73篇
  2003年   69篇
  2002年   72篇
  2001年   14篇
  2000年   10篇
  1999年   11篇
  1998年   18篇
  1997年   8篇
  1996年   12篇
  1995年   11篇
  1994年   6篇
  1993年   10篇
  1992年   1篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   6篇
  1982年   6篇
  1981年   11篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1975年   7篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
  1968年   1篇
排序方式: 共有1235条查询结果,搜索用时 31 毫秒
101.
Selenomonas ruminantium synthesizes cadaverine and putrescine from L-lysine and L-ornithine as the essential constituents of its peptidoglycan by a constitutive lysine/ornithine decarboxylase (LDC/ODC). S. ruminantium grew normally in the presence of the specific inhibitor for LDC/ODC, DL-alpha-difluoromethylornithine, when arginine was supplied in the medium. In this study, we discovered the presence of arginine decarboxylase (ADC), the key enzyme in agmatine pathway for putrescine synthesis, in S. ruminantium. We purified and characterized ADC and cloned its gene (adc) from S. ruminantium chromosomal DNA. ADC showed more than 60% identity with those of LDC/ODC/ADCs from Gram-positive bacteria, but no similarity to that from Gram-negative bacteria. In this study, we also cloned the aguA and aguB genes, encoding agmatine deiminase (AguA) and N-carbamoyl-putrescine amidohydrolase (AguB), both of which are involved in conversion from agmatine into putrescine. AguA and AguB were expressed in S. ruminantium. Hence, we concluded that S. ruminantium has both ornithine and agmatine pathways for the synthesis of putrescine.  相似文献   
102.
103.
Exo-1,5-α-l-arabinofuranosidases belonging to glycoside hydrolase family 43 have strict substrate specificity. These enzymes hydrolyze only the α-1,5-linkages of linear arabinan and arabino-oligosaccharides in an exo-acting manner. The enzyme from Streptomyces avermitilis contains a core catalytic domain belonging to glycoside hydrolase family 43 and a C-terminal arabinan binding module belonging to carbohydrate binding module family 42. We determined the crystal structure of intact exo-1,5-α-l-arabinofuranosidase. The catalytic module is composed of a 5-bladed β-propeller topologically identical to the other family 43 enzymes. The arabinan binding module had three similar subdomains assembled against one another around a pseudo-3-fold axis, forming a β-trefoil-fold. A sugar complex structure with α-1,5-l-arabinofuranotriose revealed three subsites in the catalytic domain, and a sugar complex structure with α-l-arabinofuranosyl azide revealed three arabinose-binding sites in the carbohydrate binding module. A mutagenesis study revealed that substrate specificity was regulated by residues Asn-159, Tyr-192, and Leu-289 located at the aglycon side of the substrate-binding pocket. The exo-acting manner of the enzyme was attributed to the strict pocket structure of subsite −1, formed by the flexible loop region Tyr-281–Arg-294 and the side chain of Tyr-40, which occupied the positions corresponding to the catalytic glycon cleft of GH43 endo-acting enzymes.  相似文献   
104.
A novel selenium-containing compound having a selenium atom in the imidazole ring, 2-selenyl-Nα,Nα,Nα-trimethyl-l-histidine, 3-(2-hydroseleno-1H-imidazol-5-yl)-2-(trimethylammonio)propanoate, was identified from the blood and other tissues of the bluefin tuna, Thunnus orientalis. The selenium-containing compound was purified from the tuna blood in several chromatographic steps. High resolution mass spectrometry and nuclear magnetic resonance spectroscopy showed that the exact mass of the [M+H]+ ion of the compound was 533.0562 and the molecular formula was C18H29N6O4Se2. Its gross structure was assigned as the oxidized dimeric form of an ergothioneine selenium analog in which the sulfur of ergothioneine is replaced by selenium. Therefore, we named this novel selenium-containing compound “selenoneine.” By speciation analysis of organic selenium compounds using liquid chromatography inductively coupled plasma mass spectrometry, selenoneine was found widely distributed in various tissues of the tuna, with the highest concentration in blood; mackerel blood contained similar levels. Selenoneine was measurable at 2–4 orders of magnitude lower concentration in a limited set of tissues from squid, tilapia, pig, and chicken. Quantitatively, selenoneine is the predominant form of organic selenium in tuna tissues.  相似文献   
105.
To activate naive T cells convincingly using Mycobacterium bovis bacillus Calmette-Guérin (BCG), recombinant BCG (BCG-D70M) that was deficient in urease, expressed with gene encoding the fusion of BCG-derived heat shock protein (HSP) 70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed. BCG-D70M was more potent in activation of both CD4(+) and CD8(+) subsets of naive T cells than recombinant BCGs including urease-deficient BCG and BCG-70M secreting HSP70-MMP-II fusion protein. BCG-D70M efficiently activated dendritic cells (DCs) to induce cytokine production and phenotypic changes and activated CD4(+) T cells even when macrophages were used as APCs. The activation of both subsets of T cells was MHC and CD86 dependent. Pretreatment of DCs with chloroquine inhibited both surface expression of MMP-II on DCs and the activation of T cells by BCG-D70M-infected APCs. The naive CD8(+) T cell activation was inhibited by treatment of DCs with brefeldin A and lactacystin so that the T cell was activated by TAP- and proteosome-dependent cytosolic cross-priming pathway. From naive CD8(+) T cells, effector T cells producing perforin and memory T cells having migration markers were produced by BCG-D70M stimulation. BCG-D70M primary infection in C57BL/6 mice produced T cells responsive to in vitro secondary stimulation with MMP-II and HSP70 and more efficiently inhibited the multiplication of subsequently challenged M. leprae than vector control BCG. These results indicate that the triple combination of HSP70, MMP-II, and urease depletion may provide a useful tool for inducing better activation of naive T cells.  相似文献   
106.
107.
To activate clot formation and maintain hemostasis, platelets adhere and spread onto sites of vascular injury. Although this process is well-characterized biochemically, how the physical and spatial cues in the microenvironment affect platelet adhesion and spreading remain unclear. In this study, we applied deep UV photolithography and protein micro/nanostamping to quantitatively investigate and characterize the spatial guidance of platelet spreading at the single cell level and with nanoscale resolution. Platelets adhered to and spread only onto micropatterned collagen or fibrinogen surfaces and followed the microenvironmental geometry with high fidelity and with single micron precision. Using micropatterned lines of different widths, we determined that platelets are able to conform to micropatterned stripes as thin as 0.6 μm and adopt a maximum aspect ratio of 19 on those protein patterns. Interestingly, platelets were also able to span and spread over non-patterned regions of up to 5 μm, a length consistent with that of maximally extended filopodia. This process appears to be mediated by platelet filopodia that are sensitive to spatial cues. Finally, we observed that microenvironmental geometry directly affects platelet biology, such as the spatial organization and distribution of the platelet actin cytoskeleton. Our data demonstrate that platelet spreading is a finely-tuned and spatially-guided process in which spatial cues directly influence the biological aspects of how clot formation is regulated.  相似文献   
108.
109.
110.

Background

There have been few reports on the role of Fc receptors (FcRs) and immunoglobulin G (IgG) in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs) in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa.

Methods

In FcγRIIB deficient (KO) and C57BL/6 (WT) mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA). Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c+ MHC class II+ cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c+ APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs) in vitro were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs) differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL).

Results

In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c+ MHC class II+ cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c+ APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously.

Conclusion

Antigen-specific IgG ameliorates allergic airway inflammation via FcγRIIB on DCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号